日韩欧美精品综合久久,中文字幕久久免费福利片,丰满少妇大乳高潮在线,日本高清在线视频

Knowledge Center

SiC Single Crystal

About SiC Wafer

Current > About SiC Wafer

What is Silicon Carbide

Compared with traditional materials, silicon carbide has excellent physical properties,
which can reduce weight and improve efficiency for discrete devices, modules and even systems

SiC

Si(silicon)+C(carbon)=SiC
Silicon carbide is a group IV - IV compound semiconductor material formed by C and Si elements in the ratio of 1:1,
and its hardness is second only to diamond.
This semiconductor material has great development potential, but is hard and brittle.
The preparation process is complex and the processing is difficult.

SiC Features

Excellent physical properties
Wide bandgap (High temperature resistance)1
High critical breakdown field(High voltage resistance2
High thermal conductivity(Heat dissipation)3
Saturated electron drift velocity(High switching speed)4
4H-SiC Si GaAs GaN
Wide bandgap(eV)1 3.26 1.12 1.42 3.42
High critical breakdown field(MV/cm)2 2.8 0.3 0.4 3
High thermal conductivity(W/cmK)3 4.9 1.5 0.46 1.3
Saturated electron drift velocity(1E7 cm/s)4 2.7 1 2 2.7
1.A wider bandgap can ensure that electrons are not easy to transit and intrinsic excitation is weak at high temperature. Thus, it can withstand higher operating temperature.
The bandgap width of silicon carbide is three times that of silicon, and its theoretical working temperature can reach more than 400 ℃.

2.Critical breakdown field strength refers to the electric field strength in electric breakdown. Once this value is exceeded, the material will lose its insulation performance.
It determines the voltage resistance of a material.
The critical field strength of silicon carbide is about 10 times that of Si, which can withstand higher voltage and is more suitable for high voltage devices.

3.Heat is one of the main reasons affecting the lifetime of devices.
The thermal conductivity represents the material's ability to conduct heat.
The high thermal conductivity of silicon carbide can effectively conduct heat, reduce the device temperature and maintain its normal operation. 

4.The saturated electron drift velocity refers to the maximum directional moving speed of electrons in semiconductor materials.
It determines the switching frequency of devices.
The saturated electron drift velocity of silicon carbide is twice that of silicon, which can miniaturize the device and improve efficiency.

SiC Applications

Power Electronics Devices

SiC power devices have unique advantages such as high voltage, high current, high temperature, high frequency and low loss, which will greatly improve the energy conversion efficiency of existing silicon based power devices and have a significant and far-reaching impact on the field of efficient energy conversion.
The main application fields are electric vehicles, charging piles, photovoltaic new energy, rail transit, smart grid, etc.

Microwave Communication

Silicon carbide based gallium nitride RF devices have been successfully applied in many fields, mainly in wireless communication infrastructure.
Silicon carbide as substrate gallium nitride RF devices have both good thermal conductivity of silicon carbide and advantages of high-power RF output of gallium nitride in high frequency band, which can provide the power and efficiency required by the next generation of high frequency telecommunication network and become the mainstream choice of 5G base station power amplifier.
>Back
? 2021 Copyright SICC Co., Ltd. All Rights Reserved.
Top 徐闻县| 徐闻县| 太原市| 刚察县| 铁岭市| 广德县| 咸丰县| 宁远县| 册亨县| 青神县| 南部县| 井研县| 晋中市| 吉木萨尔县| 洛浦县| 隆安县| 北票市| 白银市| 台前县| 修水县| 海淀区| 田东县| 本溪| 建德市| 茂名市| 北票市| 海丰县| 双辽市| 偃师市| 桑日县| 合水县| 天峻县| 丰镇市| 嫩江县| 太仆寺旗| 新乡市| 枝江市| 磐石市| 神池县| 吕梁市| 营口市|